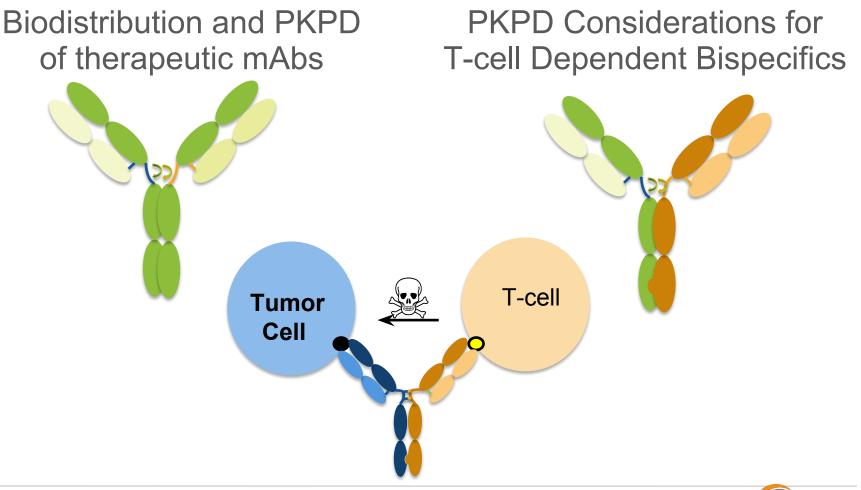


Today's discovery, tomorrow's medicine Welcome to the ASCPT Webinar! The presentation will start momentarily

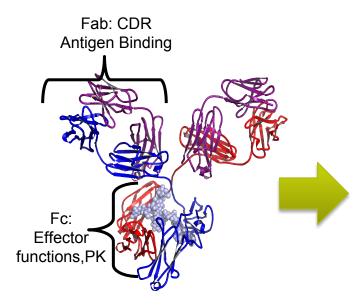
Housekeeping Notes

- Please use the chat function to address ASCPT staff
- Please direct your questions through the chat function at any time throughout the presentation
- You will receive a short email survey after the webinar. Your response will help ASCPT plan future webinars.
- Please forward ideas for future webinar topics and/or questions on today's webinar to <u>members@ASCPT.org</u>
- All previously recorded webinars are available to members via the Online Learning page on ASCPT.org



PKPD Considerations in Design and Development of T-cell Dependent Bispecific mAbs

Saileta Prabhu ASCPT Webinar

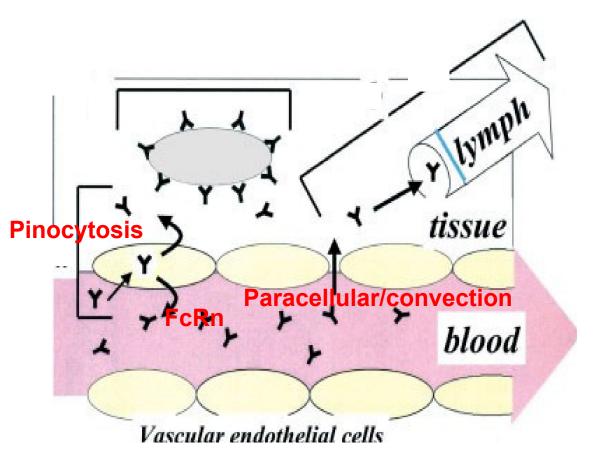

14 June 2018

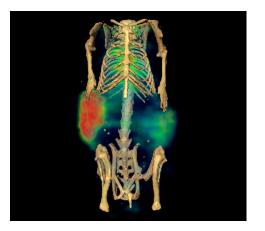
Elimination mechanisms of mAbs

Nonspecific clearance

-pinocytosis/endocytosis ⇒ proteolysis; -governed by FcRn, FcγRs, charge, and pl

Specific clearance due to antigen binding -governed by antigen biology, expression and kinetics


Immunogenicity


-clearance of immune complexes by FcgRs

Mechanism of distribution of mAbs

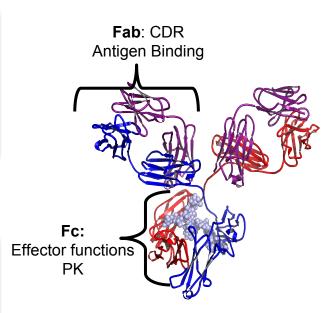
Antibodies are largely confined to the vascular space due to their size

Distribution of indium-labeled anti-huCD3/Her2 in a mouse tumor model

D. Mandikian, B. Shen, V. Yip, L. Nazarova, H. Anezinos, A. Boswell

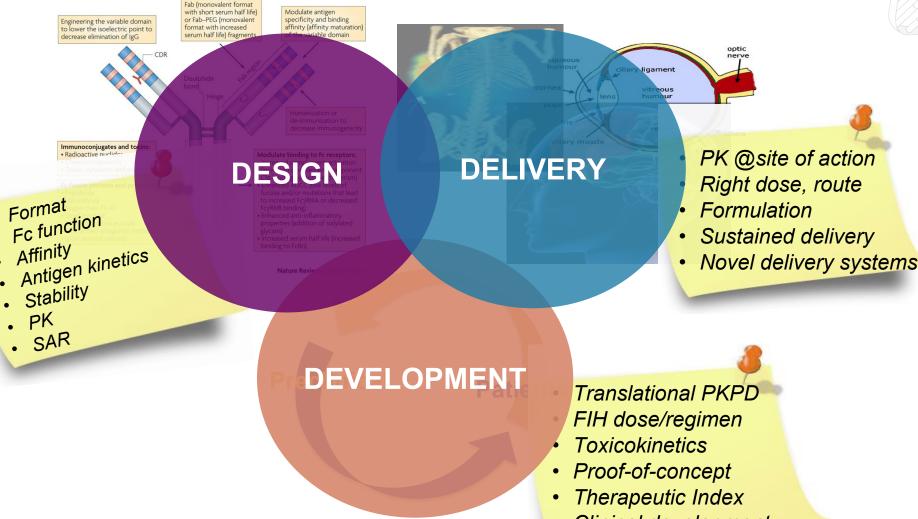
5

Antibody distribution and elimination is a function of its structure, th antigen, and MOA/pharmacology of the antigen and antibody


mAb structure

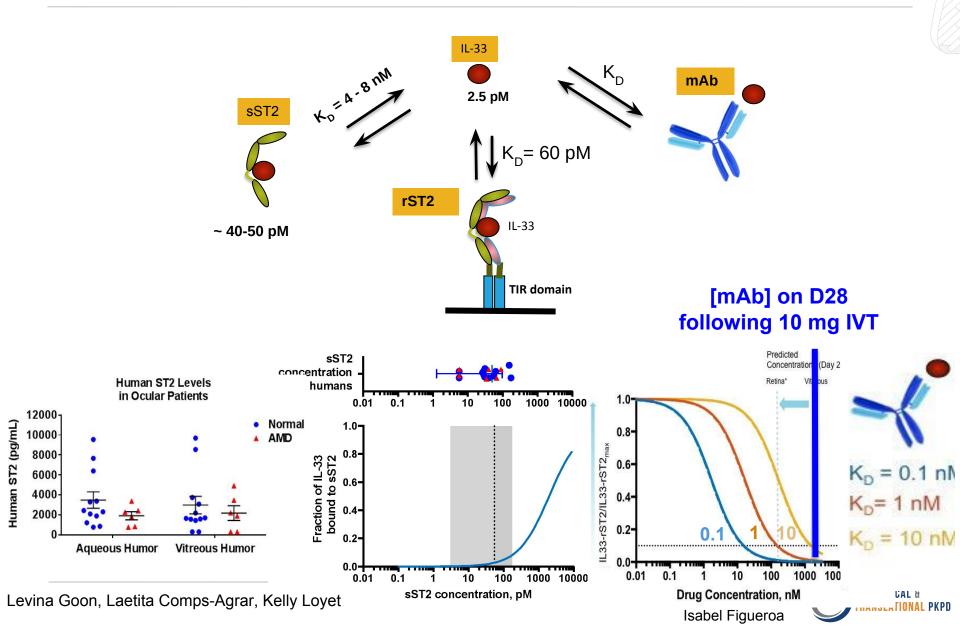
Size

Structural variants eg. glycans Affinity to antigen, FcγR, FcRn Depleting or blocking MOA Species differences

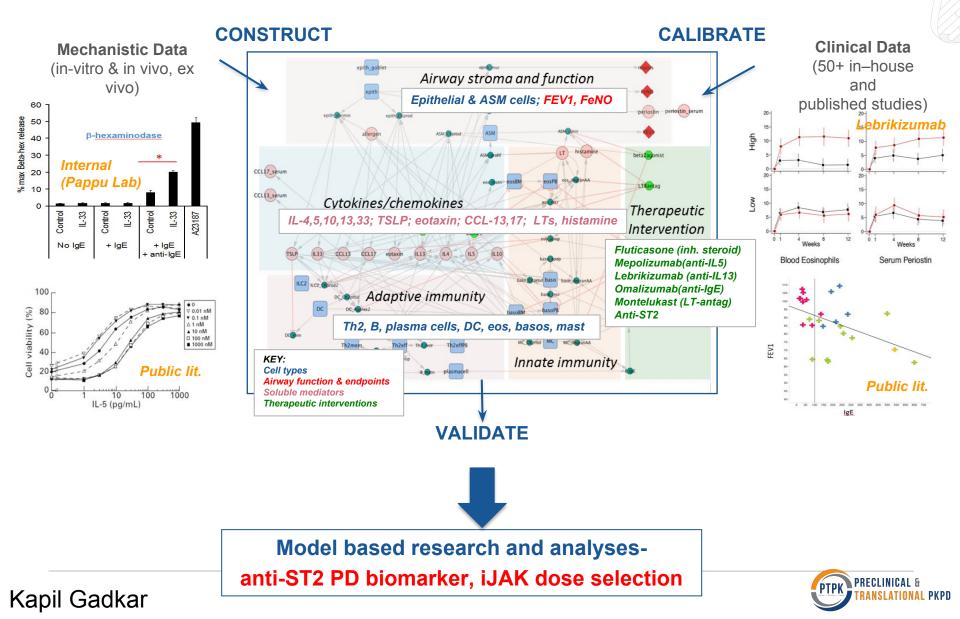

Antigen

Turnover kinetics (half-life) Expression levels/concentration Soluble or membrane bound Down/up-modulated or re-expressed Pharmacological activity Species differences

Our vision-To design, develop, and deliver novel medicines to patients using quantitative pharmacology



Clinical development



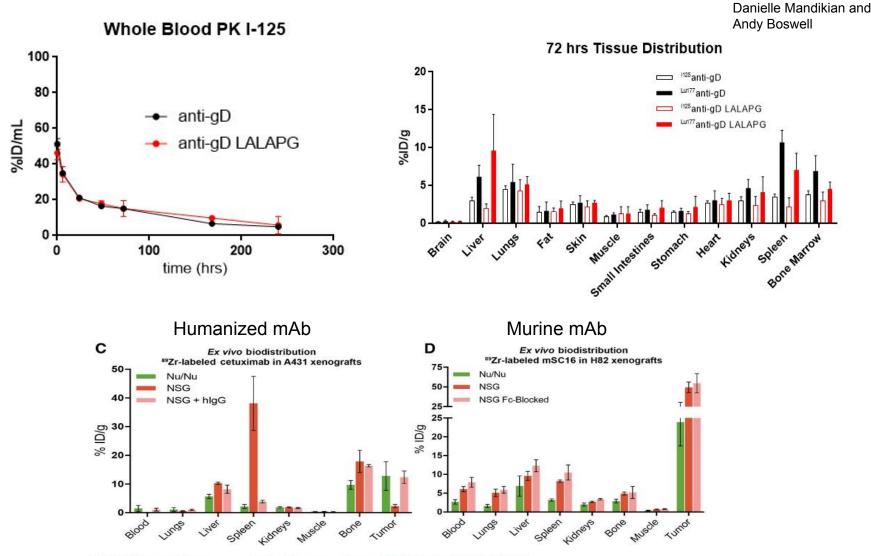
7

Soluble ST2 in vitreous is not a sink for IL33

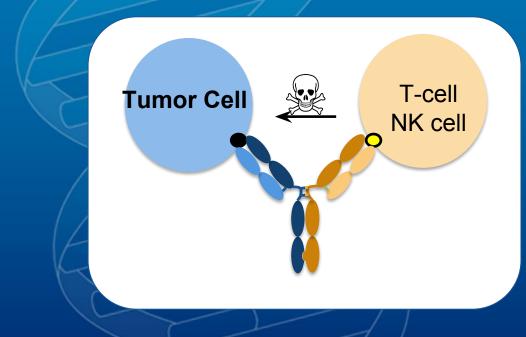
Mechanism based asthma disease model supporting Genentech pipeline for target validation, molecule selection & biomarker evaluation

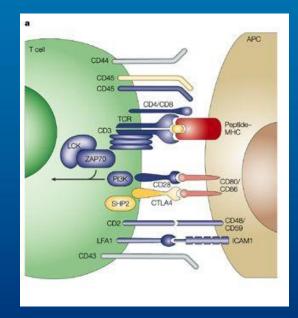
Current PK screening strategy for selection of lead mAb candidate

Jeff Lutman, Kapil Gadkar, Amrita Kamath, Daniela Bumbaca, Carol Cullen, Vikas Sharma, Yuda Zhu, Isidro Hoetzel, Paul Carter, Paul Fielder

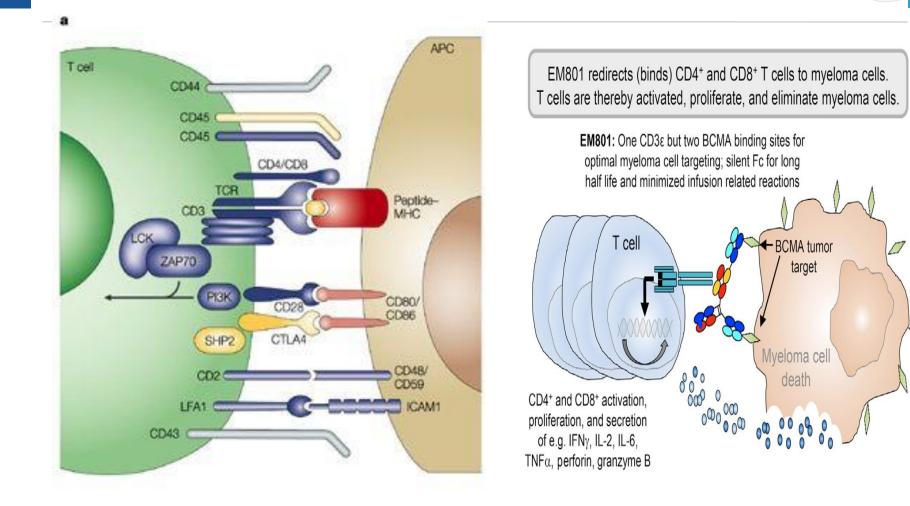

Areas for expansion: bispecific mAbs, murine mAbs, mAbs for ophtha, mechanism of atypical CL, slow CL, in silico structure-modeling.

10


Role of FcgRs in mAb biodistribution and clearance


Limited understanding/data

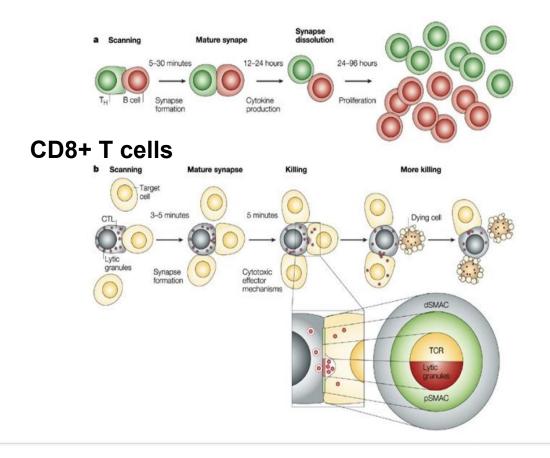
Sai Kiran Sharma et al. Cancer Res 2018;78:1820-1832



PKPD considerations for T-cell Dependent Bispecifics (TDBs)

Immunological Synapse: MOA of TDBs

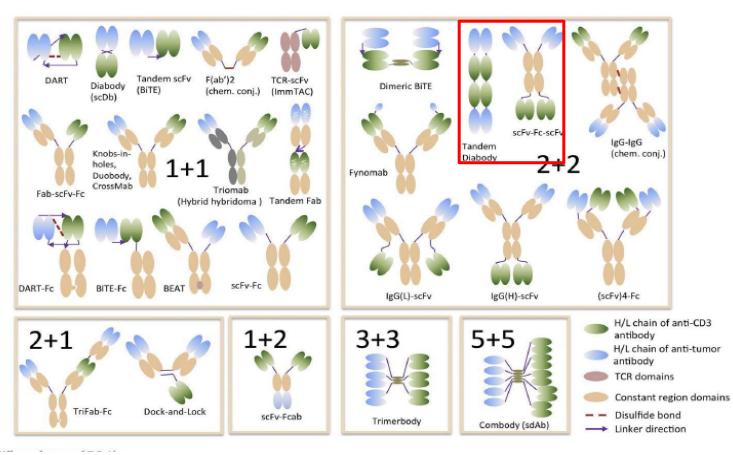
Huppa and Davis, 2003


Seckinger, 2017

Spatiotemporal dynamics in immunological synapse

14

CD4+ T cells



Huppa and Davis, 2003

Bispecific Formats for TDBs

Z. Wu, N.V.,. Cheung

Pharmacology and Therapeutics 182 (2018) 161-175

- No Fc or silent Fc in all formats except Catumaxomab
- Monovalent CD3 binding for all except Tandem Diabody and scFv-Fc-scFv
- CD3 affinity ranges from 1-200 nM
- Tumor ag binding is monovalent or bivalent (helps avidity)
- Elimination half-life ranges from 2-8 hr (BiTE), 7-22hr (scFv-Fc-scFv) to days (for TDBs with Fc)

TDBs in Clinical Development

Clinical phase^b

Z. Wu, N.V.,. Cheung

Tumor antigen

T-BsAb in clinical development*.

Name

Table 1

Wu and Jimeno, 2018

References

Pharmacology and Therapeutics 182 (2018) 161-175

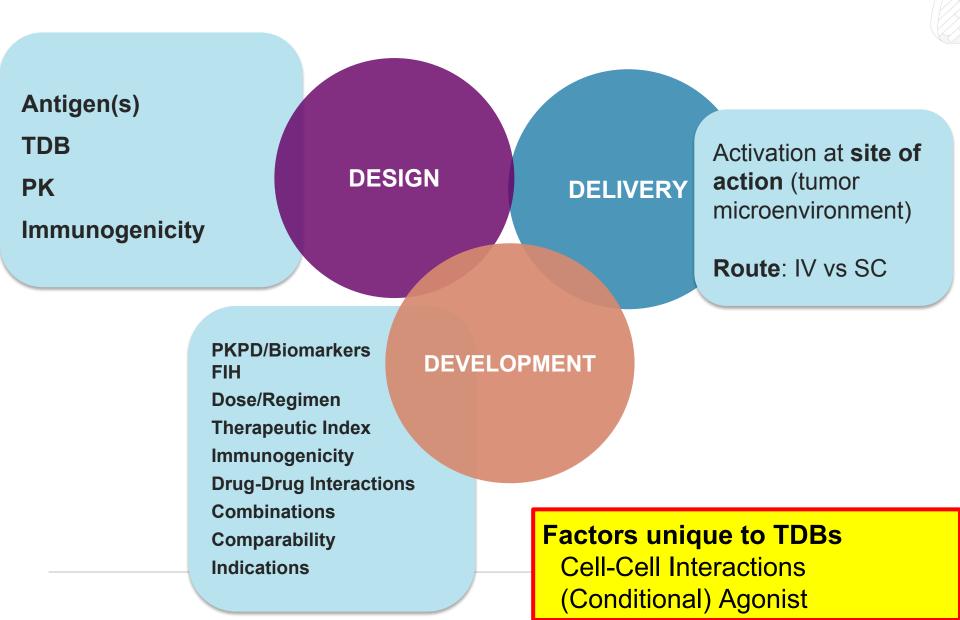
BCMA	AMG 420 (a.k.a. duvortuxizumab, BI 836909)	I (2015/NCT02514239)	n.a.	BITE	(Hipp et al., 2017)
CD123	JNJ-63709178	I (2016/NCT02715011)	n.a.	hIgG	(Gaudet et al., 2016)
CD123	MGD006	1 (2014/NCT02152956)	proprietary	DART	(Chichili et al., 2015; Huang & Johnson, 2014)
CD123	XmAb14045	I (2016/NCT02730312)	n.a.	Fab-scFv-Fc	(Chu, Pong, et al. 2014)
CD19	AFM11	I (2014/NCT02106091)	UCHT1 (h)	TandAb	(Reusch et al., 2015)
CD19	MGD011 (a.k.a. JNJ-64052781)	I (2016/NCT02743546)	XR32 (h)	DART-Fc	(Liu et al., 2016)
CD19	MT103 (blinatumomab)	Approved	L2K	BiTE	(Dreier et al., 2002, 2003; Löffler et al., 2000; Mølhøj et al., 2007)
CD20	Bi20 (FBTA05)	I/II (2010/NCT01138579)	26II6 (r)	m/rlgG	(Stanglmaier et al., 2008)
CD20	CD20-TDB (a.k.a. BTCT4465A, RG7828)	I (2015/NCT02500407)	UCHT1 (h)	hIgG	(Sun et al., 2015)
CD20	REGN1979	I (2014/NCT02290951)	n.a.	hIgG	(Smith, Olson, et al. 2015) From VelocImmune mice
CD33	AMG-330	I (2015/NCT02520427)	n.a.	BiTE	(Friedrich et al., 2014; Harrington et al., 2015; Laszlo, Gudgeon, Harrington, & Walter, 2015)
CEA	CEA TCB (RG7802, RO6958688)	I (NCT02324257 and NCT02650713)	Proprietary	TriFab-Fc	(Bacac et al., 2016)
CEA	MEDI-565 (a.k.a. AMG-211)	I (2011/NCT01284231)	L2K (de)	BITE	(Oberst et al., 2014)
CLEC12A, a.k.a. CLL-1	MCLA-117	I (2017/NCT03038230)	Proprietary	hIgG	(Bakker, Van Loo, & Logtenberg, 2014; Van Loo, Doornbos, Dolstra, Shamsili, & Bakker, 2015)
EpCAM	AMG110 (a.k.a. MT110, solitomab)	I (2008/NCT00635596)	L2K (de)	BiTE	(Brischwein et al., 2006; Hermann et al., 2010)
EpCAM	Catumaxomab	Approved	26II6 (r)	m/rlgG	(Chelius et al., 2010; Ruf et al., 2004; Zeidler et al., 1999)
GPA33	MGD007	I (2014/NCT02248805)	n.a.	DART-Fc	(Moore et al., 2014)
GPC3	ERY 974	I (2016/NCT02748837)	n.a.	hIgG	(Ishiguro et al., 2016)
Her2	Ertumaxomab	II (2007/NCT00522457)	26II6 (r)	m/rlgG	(Haense et al., 2016)
Her2	GBR1302	I (2016/NCT02829372)	n.a.	BEAT	(Croset et al., 2014)
HLA-A2/gp100	IMCgp100	Ib/II (2015/NCT02535078)	n.a.	TCR-aCD3	(Liddy et al., 2012)
p-cadherin	PF-06671008	I (2016/NCT02659631)	XR32 (h)	DART-Fc	(Root et al., 2016)
PSMA	BAY2010112 (AMG212, pasotuxizumab)	I (2012/NCT01723475)	Proprietary	BiTE	(Friedrich et al., 2012; WHO, 2014)
PSMA	MOR209/ES414	I (2014/NCT02262910)	n.a.	scFv-Fc-scFv	(Hernandez-Hoyos et al., 2016)

αCD3 clone used[€]

Formats

* This table excludes trials using pre-arm ATC.

^b Clinical trial stage shows the most advanced clinical phases for the molecule to date. The year of the trial is based on the date published on clinicaltrials.gov.


e n.a. denotes clones whose information is not disclosed in the references given; proprietary denotes clones whose information is available in the patent issued or patent pending, as cited in the references; (h):humanized; (r):rat; (de):deimmunized.

 \checkmark

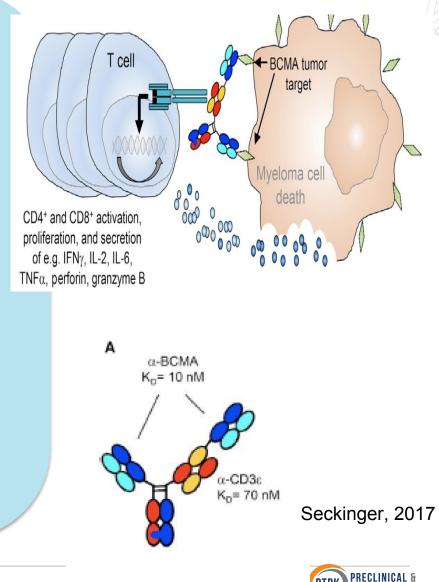
PD

PKPD considerations for TDBs

PKPD considerations for DESIGN of TDBs

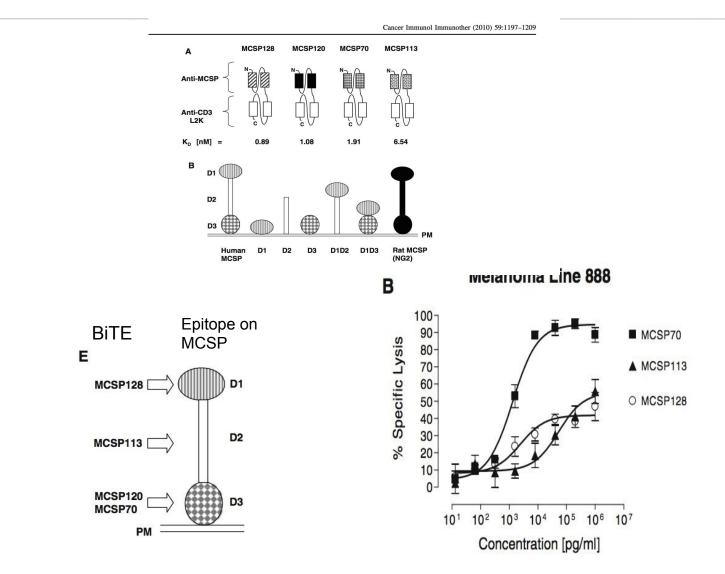
ĕ

Antigen(s): CD3 and tumor antigen


Kinetics Expression levels and profile Pharmacology **Epitope**

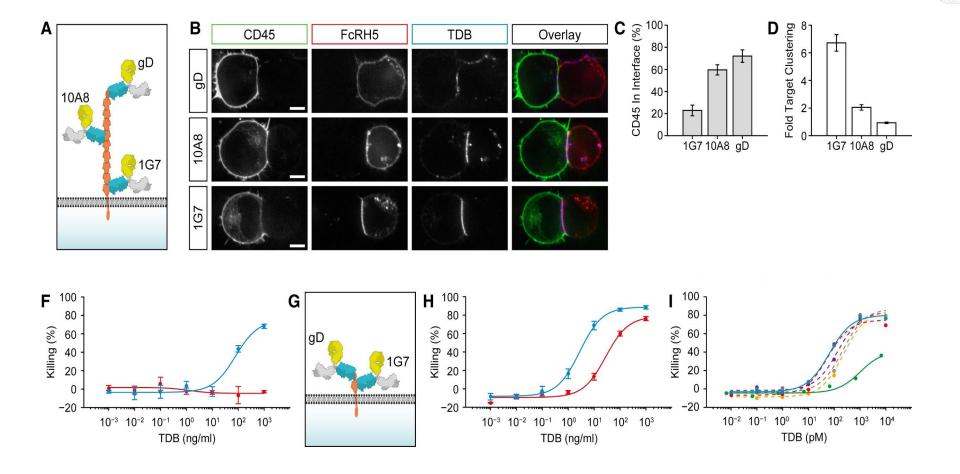
TDB:

Affinity, avidity, kon/koff Valency Format Conformation Linker stability Fc functions

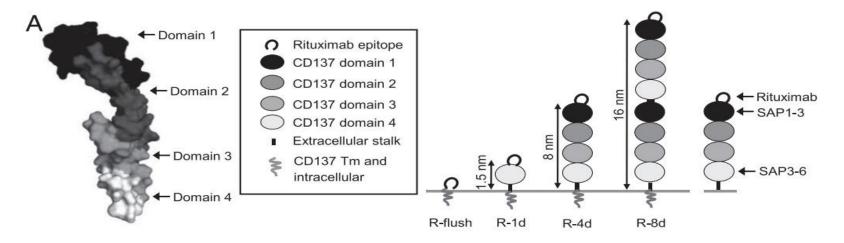

PK-Fc, size, format

Immunogenicity Structure MOA

NSLATIONAL PKPD


Epitope distance to the target cell membrane determines the potency of T cell-mediated lysis by BiTE antibodies specific for MCSP or EpCAM*

Bluemel, 2010


Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing

20

Antibody Distance from the Cell Membrane Regulates **Antibody Fc-mediated Effector Mechanisms**

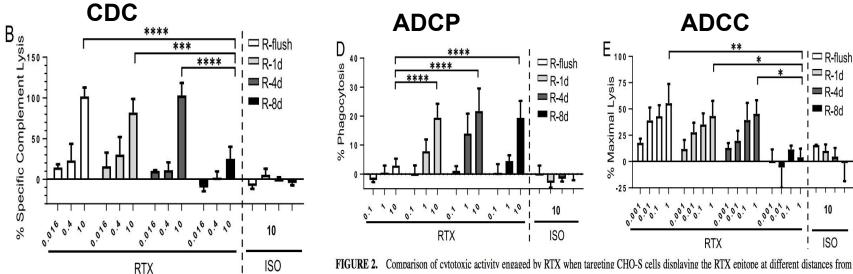
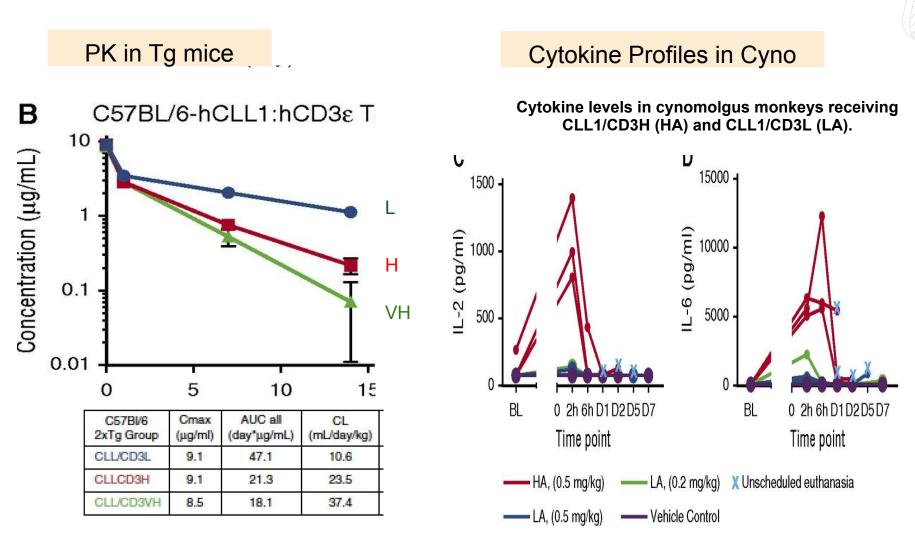



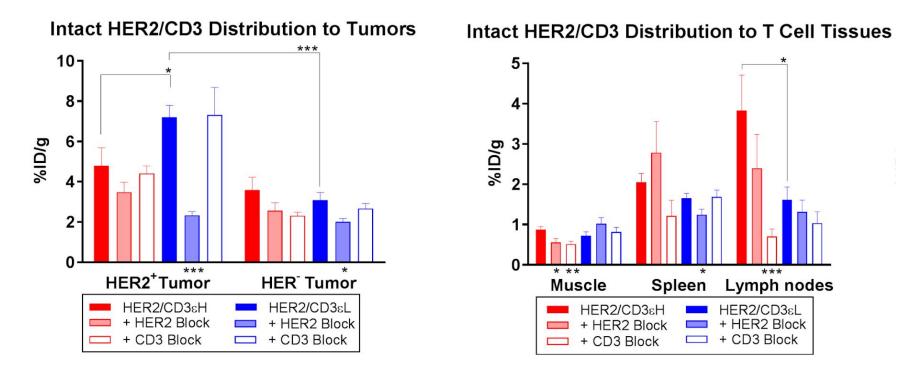
FIGURE 2. Comparison of cytotoxic activity engaged by RTX when targeting CHO-S cells displaying the RTX epitope at different distances from the

Cleary, J. Immunol., 2017

Impact of CD3 affinity on PK and cytokine levels

Does binding on/off rates impact activity?

Steven R. Leong et al. Blood 2017;129:609-618


PRECLINICAL &

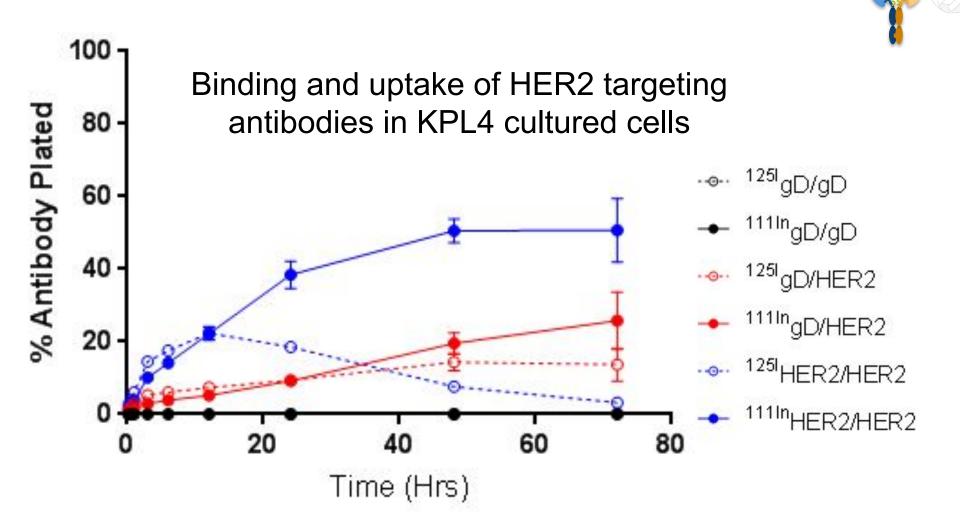
ANSLATIONAL PKPD

DTDK

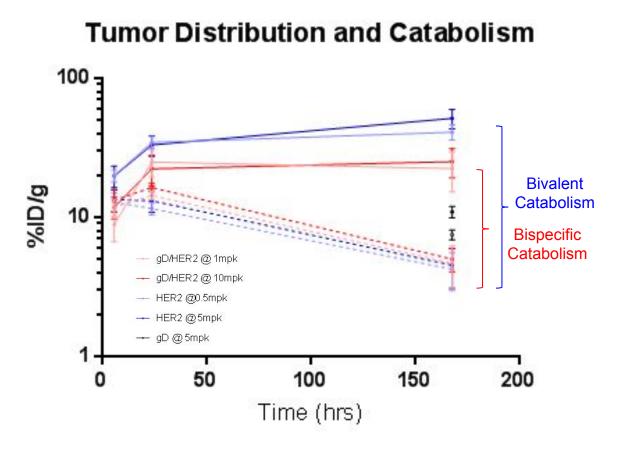
Relative affinities of CD3/(Her2) compete for distribution to targets

Increased CD3 affinity leads to decreased tumor distribution and increased secondary lymphatic tissue distribution

Mandikien, 2018



23


nd by

HER2

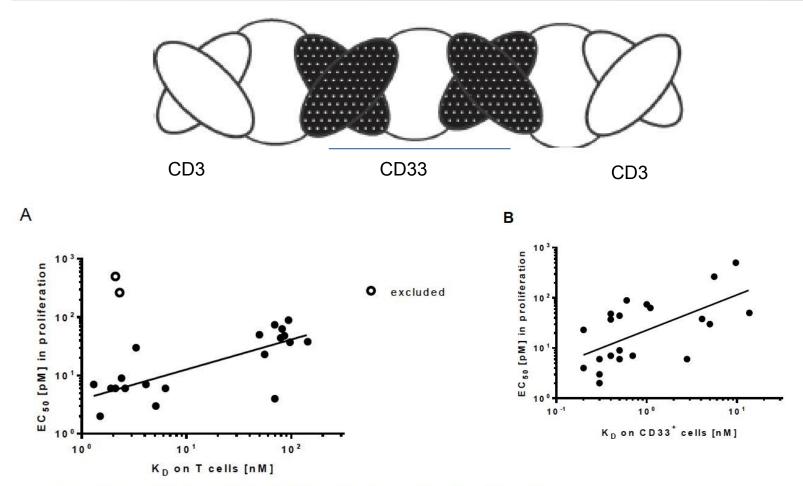
Valency: Binding and antibody internalization is reduced for bispecific antibodies compared to bivalents

Danielle Mandikian, Madeleine Ramos and Andy Boswell

24 hrs In-111 gD/HER2 High @ 1 r n-111 HER2 @ 0.5 mpk Low

Bispecific Antibodies show slight differences in tumor penetration and appear at higher concentrations on the periphery.

ANSLATIONAL PKPD

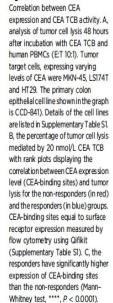

Reduced valency leads to reduced internalization in vivo

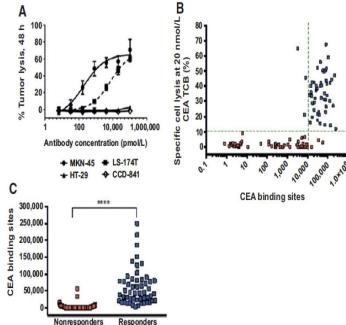
Example: Anti-HER2 knob in hole antibodies dosed in KPL4

tumor bearing mice, normalized to HER2 epitope

With anti-CD33/CD3 TandAb, bivalent binding for both CD3 and CD33 correlated with activity

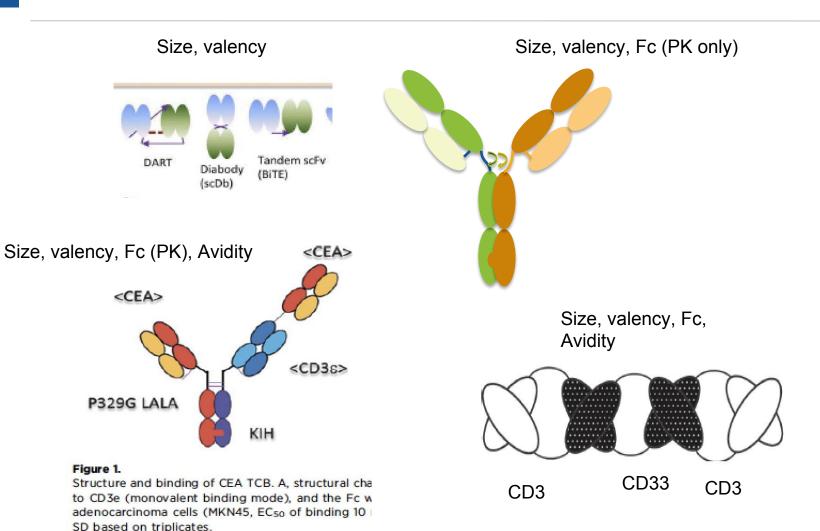
Correlation of CD3 and CD33 affinity with EC₅₀ in T-cell proliferation assays


Data points from proliferation assays shown in Supplemental Figure 2 were plotted as a function of K_D on T-cells (**A**) or CD33+ cells (**B**). Slope in **A** is 0.5±0.1, r=0.764, p<0.0001. Data points excluded in A due to cell viability <50% at completion of the experiment. Slope in B is 0.7±0.2, r=0.622, p=0.002.



Reusch, 2016

Anti-CEA/CD3 TCB (IgG-Fab) format leverages bivalent binding and avidity


<CEA> P329G LALA KIH

A

<CEA>

Bacac 2016

Does format impact TDB PKPD and distribution? 28

PKPD considerations for Design of TDBs

Closing remarks

Affinity, avidity, format, epitope, valency, flexibility/conformation are key design parameters-need further systematic studies to delineate effects on activity, PK, distribution.

Antigen epitope and size likely critical.

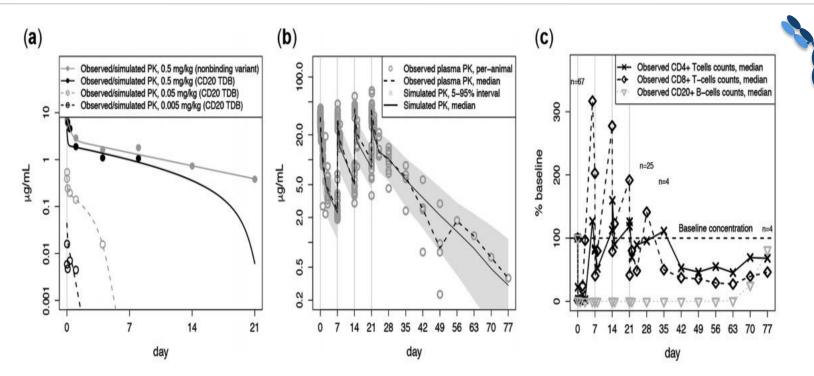
PK: long half-life is desirable feature

Immunogenicity: no clinical data yet but given novel formats and "immune activation" MOA, immunogenicity should be critically assessed

Next generation TDB designs will likely include additional immune functions (co-stimulation), and/or NK cells or gamma delta T cells. Also, "threading the needle" between normal expression vs tumor expression will be an important design challenge.

29

DESIGN


PKPD considerations for Development of TDBs

- **PKPD/Biomarkers**
- FIH/Dose Escalation
- Dose/Regimen
- Therapeutic Index
- Immunogenicity
- Drug-Drug Interactions
- Combinations
- Comparability
- Indications

Anti-CD20/CD3 PKPD (Model)

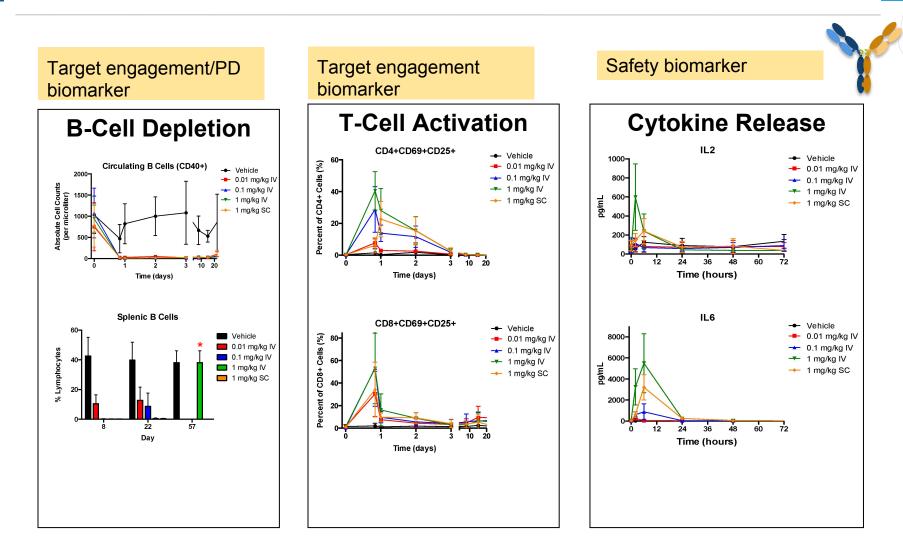
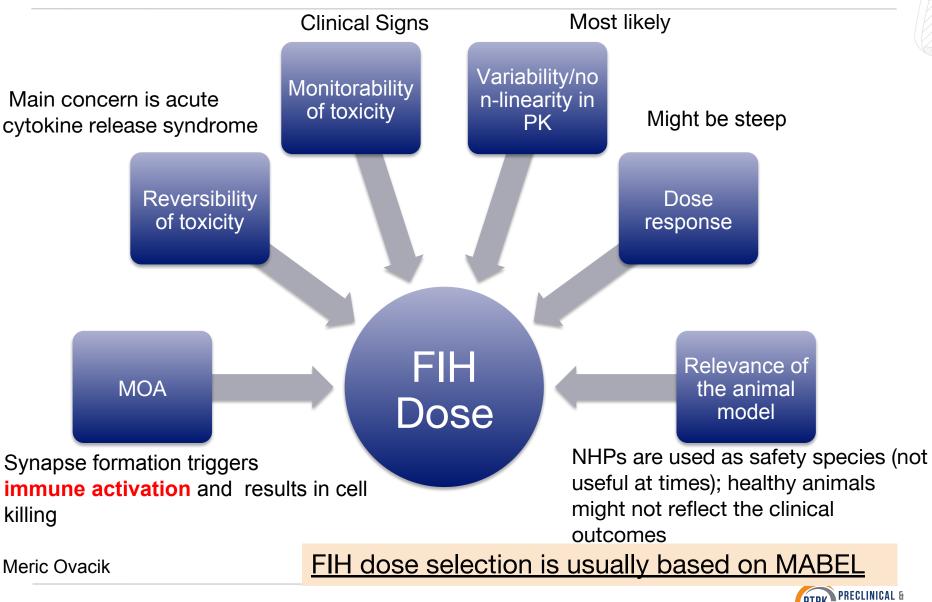


Figure 2 Murine PK and cynomolgus monkey PK/PD data with model simulations. (a) Two-compartment nonlinear PK model, as described by Eqs. (1) and (2), with $CL_2^0 = 0$ and $\lambda_1 = 0$, fitted to murine data. Key estimated parameters for the CD20 TDB are $CL_1 = 16 \text{ mL/day/kg}$, $K_M = 0.015 \mu g/mL$, and $V_{max} = 12 \mu g/day$. The solid gray curves indicate model fitted to PK data from the low-affinity CD3 TDB variant UCHT1 [1] (V_{max} fixed to zero). (b) Comparison of mixed-effects model simulations (median PK profile and interanimal variability) generated using fitted mixed-effects parameters summarized in **Table 2**, and observed PK data for 1 mg/kg i.v. bolus and slow push repeat dosing cohorts. Solid line and shaded region correspond to simulated median and 5–95% intervals. Circles are observed drug concentrations in plasma and dashed line corresponds to median observations at each timepoint. (c) Corresponding changes in median peripheral blood CD4+, CD8+ T-cell counts, and CD20+ B-cell counts. Number of animals (*n*) for which T- and B-cell levels were measured is indicated at t = 0, 28, 35, and 77 days. In all panels, vertical lines indicate dosing times.

Ferl 2018


PKPD in Cynomolgus Monkeys with anti-CD20/CD3

Eric Stefanich, Hong Wang

Multiple variables contribute to the determination of approach for (TDBs) FIH dose selection

Adapted from Siddharth Sukumaran, NBC 2017

In vitro cell killing, T cell activation or cytokine release are the main assays

- ✓ Either i-) PMBC or ii-) PBMC and target expressing cell line
- ✓ EC₂₀ EC₃₀ were used as the projected C_{max} to determine FiH dose (in conjunction with V_C)
- Most sensitive endpoint (e.g. cell killing or T cell activation) or most sensitive safety endpoint (T cell activation or cytokine release) were used
- ✓ Safety factors and RO information were used as supporting data

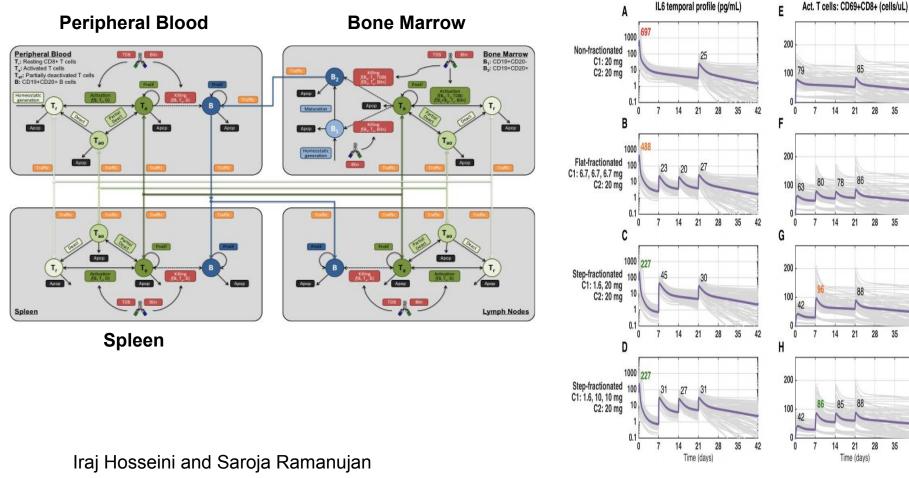
Dose Escalation Considerations

Findings and recommendations from Saber et al, 2017

Typically dose escalation 3+3; for TDBs single patient cohort before switching to 3+3.

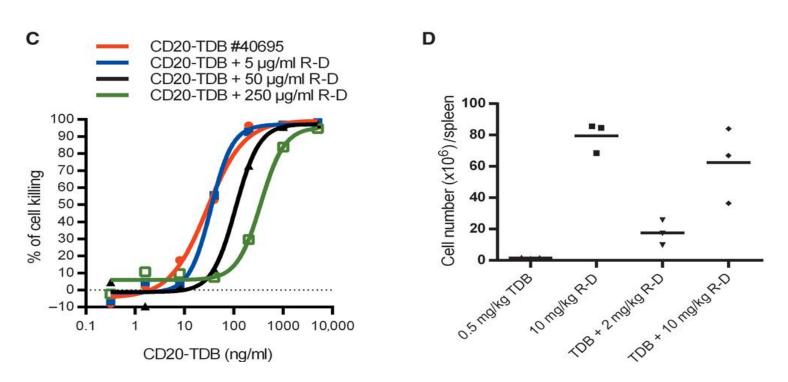
Protocol Amendments: increase duration of infusion include a step dose use medication prophylactically for IRR/CRS

For approximately half (12 out of 27 or 44%) of the antibodies examined the FIH doses were in microgram ranges and corresponded to up to 50% RO. These doses were 100s-1000s fold less than doses given to patients with acceptable/manageable toxicities and the period of time to complete the dose-finding trial was up to 5 yr (range of approximately 1–5 yr). While obtaining safety data is the main goal of Phase 1 trials, patients enrolling in clinical trials for cancer drugs have generally exhausted available therapies and enter with the hope of benefiting from the study. A clinical trial design that minimizes exposure to sub-therapeutic doses while maintaining safety is desired for these patients. This goal may be achieved by optimal FIH dose selection or through non-traditional FIH trial designs which permit intrapatient dose escalation when the FIH doses are low, such as \leq 50% RO using Equation B.


Meric Ovacik

Saber et al. ,2017

Quantitative systems pharmacology (QSP) model of Anti-CD20/CD3 to characterize cycle 1 dose schedules

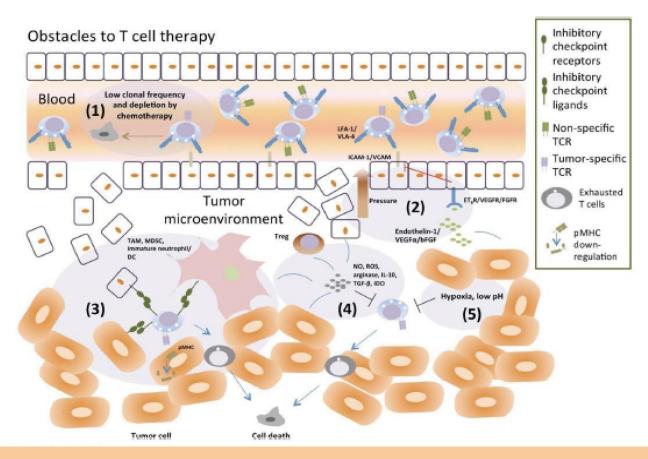

Simulated Time Profiles of IL-6 and Activated T Cells Following Treatment of NHL Patients with TDB

42

Rituxan (effectorless) increases the EC50 for B-cell killing

C) PBMCs isolated from healthy donors were first incubated with rituximab-DANA (R-D) at the concentration indicated for 1 hour, and then CD20-TDB was added. After 48 hours, B cell killing was determined by FACS. (**D**) huCD20-huCD3 double-transgenic mice were treated once intravenously at the dose indicated; for combination treatment, mice were pretreated intravenously with rituximab-DANA, and CD20-TDB (0.5 mg/kg) was injected intravenously 30 min later. Spleens were collected at day 7, and B cell counts were determined by FACS. Bars in the plots indicate mean values, with *P* values calculated by unpaired *t* test (*n* = 3 mice per group).

Science Translational Medicine


Published by AAAS

Liping L. Sun et al., Sci Transl Med 2015;7:287ra70

Use of Combos with TDBs

Z. Wu, N.V., Cheung

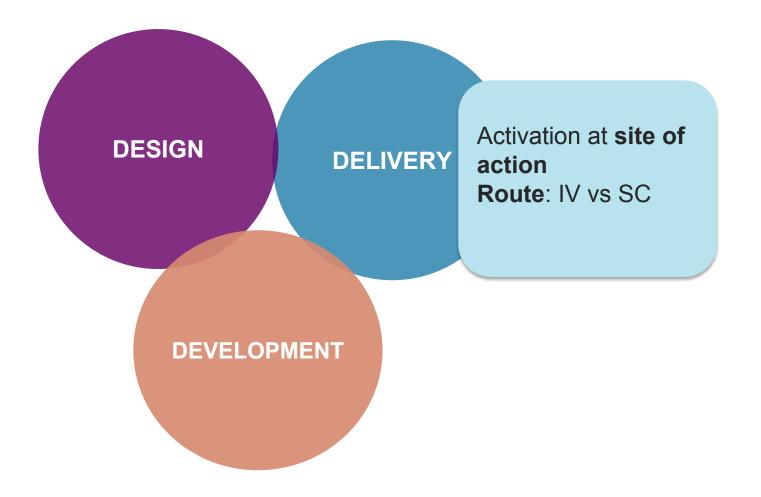
Pharmacology and Therapeutics 182 (2018) 161-175

Combinations: Agents that increase tumor infiltrating lymphocytes, decrease T cell/tumor cell immunosuppression; cytokines/chemokines; anti-VEGF, vaccines.

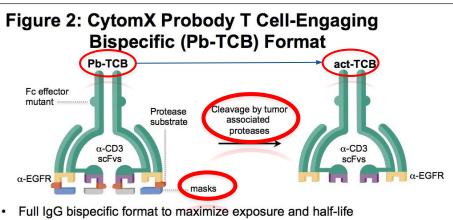
AL & Onal PKPD

PKPD considerations for T-cell bispecifics

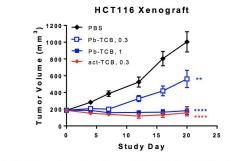
Closing remarks

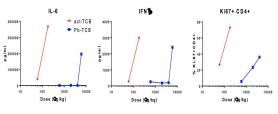

PKPD: Well established serum PKPD relationships (eg. T cell activation); need tissue PKPD assessments
FIH: use of in vitro T cell activation assays
Dose/Regimen: Dose escalation and fractionation
DDI: Presence of Herceptin or Rituxan/Gazyva
Combinations: Agents that increase TILs, decrease T cell/tumor cell immunosuppression; cytokines/chemokines; anti-VEGF.

39


DEVELOP-MENT

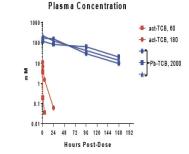
PKPD considerations for Delivery of TDBs


Activation of T-cell (effector cell) at site of action (tumor)


Fc-effector impaired to minimize cross linking to FcyR bearing cells

- · Format optimized for a-CD3 affinity, mask strength and cleavable substrates
- act-TCB represents protease activated, unmasked TCB

Figure 7: EGFR/CD3 Pb-TCB is Efficacious in HCT116 Established Tumor Model


B Pb-TCB shifts dose-response for cytokine release and T cell activation relative to act-TCB

Cytokine analysis was performed with a Luminex® suspension array system on serum samples. Data presented were obtained at 8 hours post-dose.

Flow cytometry was performed on permeabilized samples. Data presented were obtained at 72 hours post-dose.

Figure 9: Tolerated Pb-TCB Exposure is > 10,000-fold Higher than Tolerated Exposure of act-TCB in Cynomolgus Monkeys

Plasma concentration of act-TCB and Pb-TCB was measured by ELISA using anti-id capture and anti-huFc detection. Time points after 4 hours for act-TCB dosed at 60 µg/kg and 24 hours for act-TCB dosed at 180 µg/kg were BLQ. Tolerated exposure represents area under the curve (AUC) of Pb-TCB (448 day^hnM) dosed at 2000 µg/kg and act-TCB (0.04 day^hnM) dosed at 60 µg/kg.

Female NSG mice (n=8/group) were implanted SC with 2 million HCT116 cells on day -15. Three days later, mice were injected IP with human PBMCs at a T cell/tumor inoculum ratio of 1:1. Test and control articles were administered IV at 0.3 mg/kg or 1 mg/kg, weekly. TV is presented as mean ±SEM.

Boustany, 2017

PKPD considerations for T-cell bispecifics

Closing remarks

Affinity, format, epitope, valency are key design parameters-need further systematic studies to delineate effects on activity PK: long half-life is desirable feature DESIGN Immunogenicity: no clinical data yet but given novel formats and "immune activation" MOA, immunogenicity should be considered Next generation TDBs design will likely include additional immune functions (co-stimulation), and/or NK cells or gamma delta T cells PKPD: Well established PKPD relationships (eg. T cell activation); PKPD at site of action will be critical FIH: use of in vitro T cell activation assays DEVELOP-Dose/Regimen: Dose escalation and fractionation MENT DDI: Presence of Herceptin or Rituxan/Gazyva Combinations: Agents that increase TILs, decrease T cell/tumor cell immunosuppression; cytokines/chemokines; anti-VEGF.

DELIVERY

Improving "delivery" of TDBs will likely be part of next generation TDBs; eg. SC route or "mask" TDBs

Acknowledgements

Danielle Mandikian

Vittal Shiva Meric Ovacik Sid Sukumaran Andy Boswell Iraj Hosseini Eric Stefanich Hong Wang Greg Ferl Kapil Gadkar Lynn Kamen Madeleine Ramos Saroja Ramanujan Michael Mamounas Monique Nicoll Jeff Lutman

Victor Yip Eric Stefanich Rod Prell Amrita Kamath Chunze Li Andrey Shaw Stephen Gould Sandhya Girish Samantha Marinos Amita Joshi Paul Fielder

ASCPT

Lisa Williamson Ryan Funk Toni Avajon-Hartmann

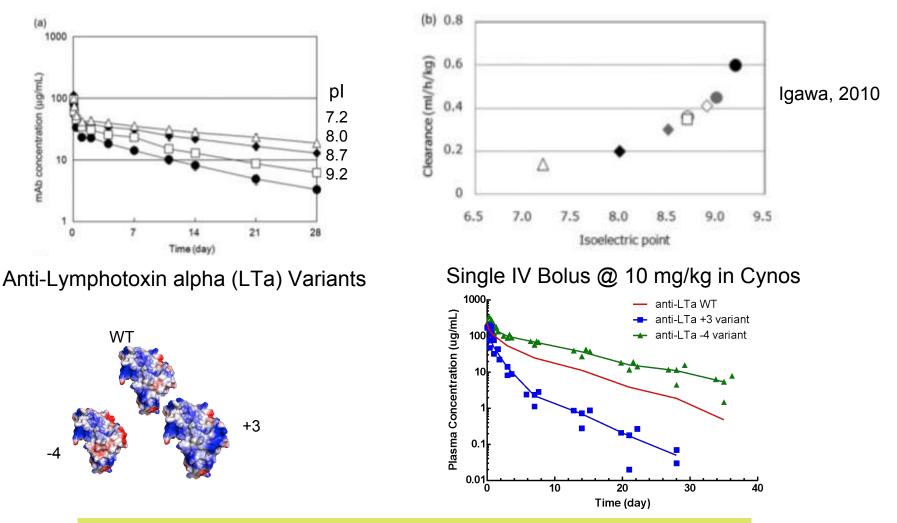
appendix

Non-linearity in PK

Variability in PK (low doses generally tested)

PK dependent on time variant-PD marker

Presence of impurities (eg. CD3 homodimers)

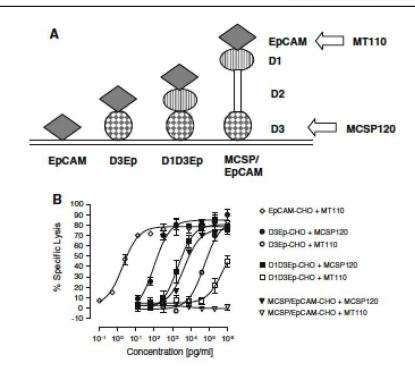


Key References

Wu and Jimeno, 2018 Bargou, 2008 Blumel, 2010 Huppa and Davis, 2004 Li, 2017 Sun 2015 Leong, 2017 Saber, 2017 Rod Prell, 2017 AAPS presentation Sid Sukumaran, 2016 AACR presentation

Changes in charge and/or pl may affect PK

How do we use this to design great molecules? Factors to consider: FcRn/FcgR binding, charge, pl, hydrophobicity, 3D structure.



Igawa, 2010; Yadav, 2015

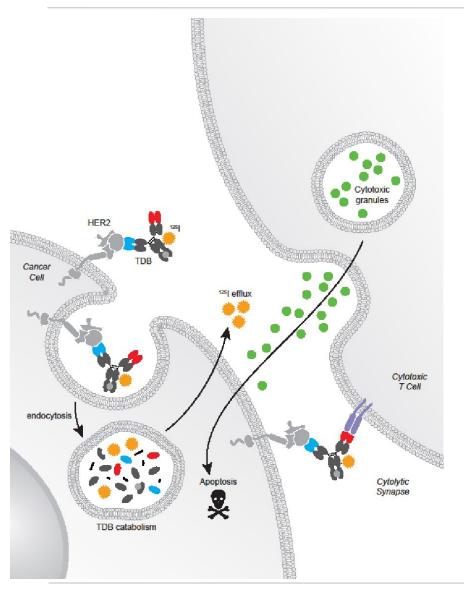
BiTE potency is influenced by antigen size

1206

Cancer Immunol Immunother (2010) 59:1197-1209

•
i

Transfected Cell Line	EpCAM-CHO				D1D3Ep-CHO		EpCAM/ MCSP-CHO	
BITE	MT110	MCSP120	MT110	MCSP120	MT110	MCSP120	MT110	MCSP120
Max. Lysis (%)	78	n.d.	84	85	68	81	0.0	76
EC _{so} (ng/ml)	0.003	n.d.	54.95	0.101	576.47	1.95	>100	4.39


Fig. 6 The effect of antigen size on redirected lysis of transfected CHO cells by domain D3-specific BiTE antibody MCSP120. a CHO cell lines expressing EpCAM/MCSP fusion proteins or EpCAM alone were used as targets. b Dose-response analysis of redirected lysis for D3-specific BiTE antibody MCSP120 or EpCAM-specific BiTE antibody MT110 of CHO lines stably expressing fusion EpCAM/ MCSP proteins or EpCAM. c Quantitation of assay results for maximal lysis and half maximum lysis (EC₅₀) **48**

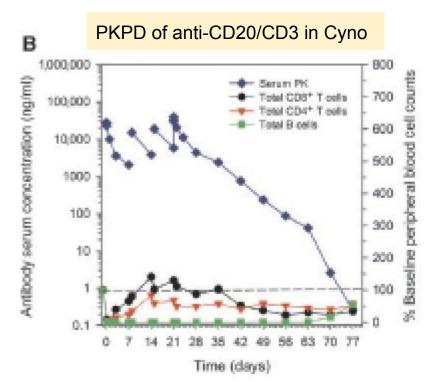
PTPK PRECLINICAL & TRANSLATIONAL PKPD

MCSP: Melanoma chondroitin sulfate proteoglycan (melanoma antigen)

Blumel, 2010

Retention at the cell surface is key for TDB MOA

TDBs need to be on the surface in order to form functional cytolytic synapses

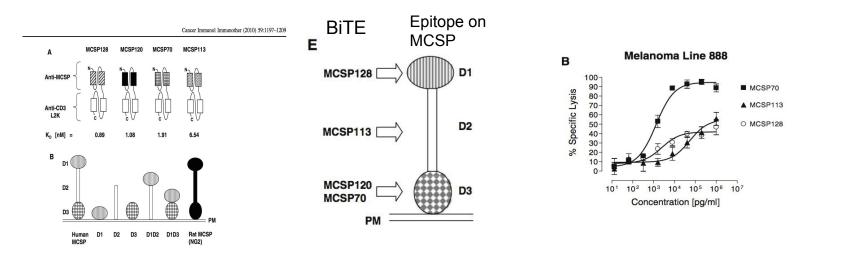

Surface half-life of tumor antigen

Many antibody therapeutics are against receptors shown to have increased internalization

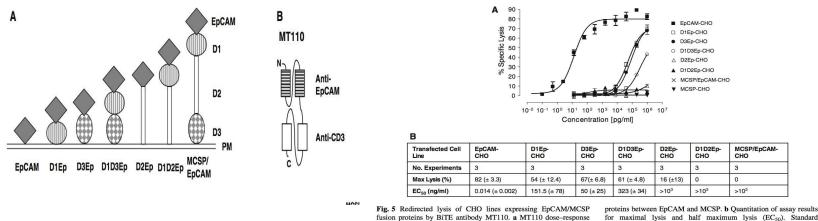
Its unknown if switching into bispecific format will impact the internalization rate of antibody bound receptors

PKPD and Biomarker Strategy

1) Safety: IL6 is being considered as the surrogate for CRS.


2) PD (target engagement):
T cell activation (CD69+, or CD25+ T cells),
T cell margination, B cell depletion,
increase in cytokines. They are not
correlated with efficacy but they all show
that the drug is active.

3) Resistance biomarker: no definitive marker yet

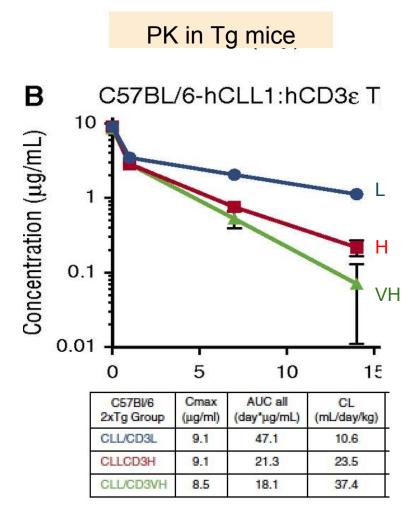


Iraj Hoseini

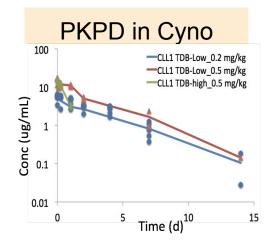
Epitope distance to the target cell membrane determines the potency of T cell-mediated lysis by BiTE antibodies specific for MCSP or EpCAM

Potency of EpCAM-specific BiTE antibody MT110 decreased with increasing distance of EpCAM to target cell membrane

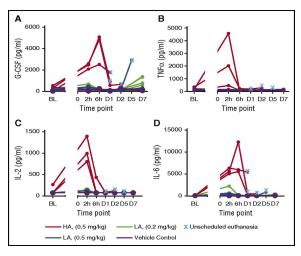
for maximal lysis and half maximum lysis (EC50). Standard deviations of the mean are shown from three independent experiments



MCSP: Melanoma chondroitin sulfate proteoglycan (melanoma antigen)


Blumel, 2010

analysis of redirected lysis of CHO lines stably expressing fusion


Impact of CD3 affinity on PK and cytokine levels

Does binding on/off rates impact activity?

Cytokine levels in cynomolgus monkeys receiving CLL1/CD3H (HA) and CLL1/CD3L (LA).

52

Steven R. Leong et al. Blood 2017;129:609-618

Anti-CD20/CD3 PKPD (Model)

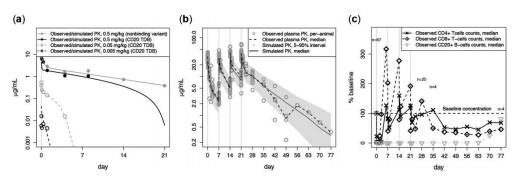


Figure 2 Murine PK and cynomolgus monkey PK/PD data with model simulations. (a) Two-compartment nonlinear PK model, as describ by Eqs. (1) and (2), with $CL_2^0 = 0$ and $\lambda_1 = 0$, fitted to murine data. Key estimated parameters for the CD20 TDB are $CL_1 = 16 \text{ mL/day/l}$ $K_M = 0.015 \ \mu\text{g/mL}$, and $V_{max} = 12 \ \mu\text{g/day}$. The solid gray curves indicate model fitted to PK data from the low-affinity CD3 TDB varie UCHT1 [1] (V_{max} fixed to zero). (b) Comparison of mixed-effects model simulations (median PK profile and interanimal variability) generat using fitted mixed-effects parameters summarized in Table 2, and observed PK data for 1 mg/kg i.v. bolus and slow push repeat dosis cohorts. Solid line and shaded region correspond to simulated median and 5–95% intervals. Circles are observed drug concentrations plasma and dashed line corresponds to median observations at each timepoint. (c) Corresponding changes in median peripheral blo CD4+, CD8+ T-cell counts, and CD20+ B-cell counts. Number of animals (n) for which T- and B-cell levels were measured is indicat at t = 0, 28, 35, and 77 days. In all panels, vertical lines indicate dosing times.

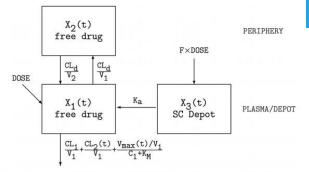
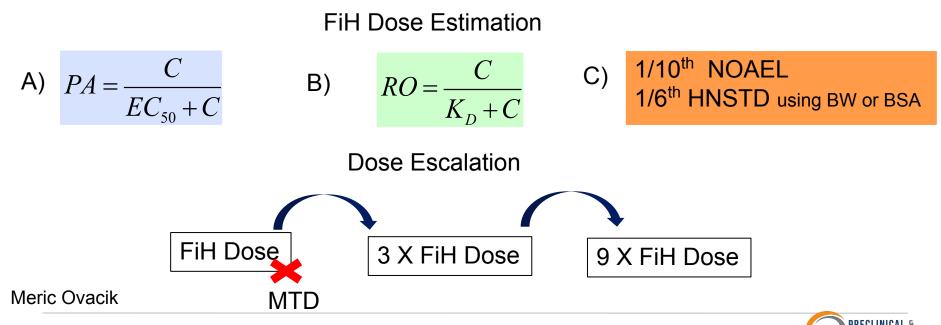


Figure 1 Schematic representation of an augmented two-compartment PK model with subcutaneous absorption, where X₁(t) is the central plasma compartment and X₂(t) represents peripheral tissue, both using units drug in μ g. X₃(t) represents the subcutaneous (s.c.) depot used for describing s.c. dosing. CL₁ and V₁ represent linear, nonsaturable drug clearance and central volume of distribution. CL_d and V₂ represent distribution clearance and peripheral tissue volume of distribution. K_a represents the fractional absorption rate of drug from the s.c. depot (1/time) and F is fractional bioavailability (0 ≤ F ≤ 1). CL₂(t)/V₁ and (V_{max}(t)/V₁)/(C₁ + K_M) are ostensibly correlated with fractional B-cell-mediated drug disposition/elimination, respectively, where CL₂(t) = CL₂⁰ · e^{-λ₂t} and V_{max}(t) = V⁰_{max}e^{-λ₁t}.

Parameter	Definition	Units	Pop. Mean	SE	%CV	SE
K _a	Subcutaneous absorption rate	1/day	1.33	0.23		—
Z	Bioavailability = $1/(1 + e^{-Z})$	dimensionless	1.66	0.56	_	-
CL ₁	Nonsaturable mAb elimination	mL/day/kg	7.05	1.4	25	13
CL_2^0	Initial linear time-varying elimination rate	mL/day/kg	63.8	41	82	91
λ2	Decay constant for CL ₂	1/day	10.1	8.7	_	_
CLd	mAb distribution clearance	mL/day/kg	31.3	6.9	69	15
<i>V</i> ₁	Central distribution volume	mL/kg	44.4	3.5	41	6
V ₂	Peripheral distribution volume	mL/kg	47.3	7.2	31	15
V ⁰ _{max}	Initial nonlinear saturable elim rate	μ g/mL	1280	678	41	16
λ1	Decay constant for V _{max}	1/day	0.144	0.048		—
KM	Michaelis-Menten constant	μg/mL	19.6	10		—

Table 2 Summary of population model parameters (cf. Figure 1) for Model VI

In a post hoc step, CL_1 , CL_2^0 , CL_d , V_1 , and V_2 were normalized by median body weight (3.12 kg) across all animals. Note that subcutaneous bioavailability = $1/(1 + e^{-Z}) = 0.84$. Pop. Mean, Population Mean; %CV, apparent percent coefficient of variation (interindividual variability); SE, standard error (a measure of precision for fitted population means and apparent percent coefficients of variation).


IAL PKPD

8

FDA Oncology analysis of CD3 bispecific constructs and Fill dose selection" Saber et al. ,2017

Regardless of sponsor's strategy; Saber et al.

- 1) estimated FiH dose based on three methods
- 2) defined a hypothetical dose escalation schedule
- 3) used MTD from available clinical data to evaluate whether FiH dose will result in MTD or how many dose escalations until MTD is reached

C = projected C_{max} in humans, EC₅₀ = EC₅₀ from the most sensitive assay, K_D = Reported value, RO=Receptor Occupancy, PA= Pharmac Precunical to NOAEL = No observed adverse effect level HNSTD = Highest non-severely toxic dose BW = Body weight BSA = Body surface area

Key findings from Saber et al. ,2017

FiH Dose based on RO %	above the human MTD
FiH Dose based on NOAEL or HNSTD	
FiH Dose based on <i>in vitro</i> Activity	10%-30% PA acceptable/ manageable toxicities
<i>in vitro</i> Activity Studies (Human Cells)	Wide range of EC ₅₀
Animal Toxicology	HNSTD reached with 90% of constructs.

55

Meric Ovacik